Unit 5

The syllable nucleus in the material world

shaping the airflow to form vocoids.

Print version of the
Phonetics with Listening Practice (British)
presentation given on
14 May 2024

Robert Spence, English Department, Saarland University

1 Goals

The goals of today's session are:

1. To briefly discuss the acoustics of sound, concentrating on vowel sounds as made in the human vocal tract
2. To become acquainted with the vowel quadrilateral and the cardinal vowels
3. To become acquainted with the diacritics that are used to specify positions 'in between' the cardinal vowels
4. To check which vowel phonemes in English fall close to cardinal vowels, and which do not

2 Acoustic phonetics and vowels

Brief overview of acoustic phonetics in relation to vowels

1. Physics of sound waves
2. Overtones and formants
3. Distinguishing vowels by means of formants
4. How to read a spectrogram

Physics of sound waves

- Motion of particles in direction of propagation of wave ...
- ... but can be represented perpendicular to it.
- Musical sounds as an easy "way in"
- http://www.spence.saar.de/akustik.jpg

Overtones and formants

- voiced continuants and nasals have a fundamental frequency (F_{0}, "F zero")
- partial overtones (or 'upper harmonics'):
- http://upload.wikimedia.org/wikipedia/commons/c/c5/Harmonic partials on strings.svg
- formants: amplified upper harmonics
- identifying vowels by their formants (F_{1} and F_{2})
- The distinctive 'quality' of a vowel depends on how the vocal tract was shaped when it was being formed, and thus on the acoustic 'formants' (especially F_{1} and F_{2})
- http://upload.wikimedia.org/wikipedia/commons/7/77/Spectrogram -iua-.png

How to read a spectrogram

- a spectrogram records: frequency (y), time (x), intensity (shading)
- http://en.wikipedia.org/wiki/File:Praat-spectrogram-tatata.png
- http://en.wikipedia.org/wiki/Spectrogram
- http://upload.wikimedia.org/wikipedia/commons/c/c5/Spectrogram-19thC.png

3 Where vowels are formed in the mouth

Position of highest part of tongue in relation to the four basic cardinal vowels

Source: Alex Jones australian english grammar, Wild and Woolley, 2001, page 170.
The empty circles show the location of the four basic cardinal vowels [i], [a], [a], [u].

The black circles show the location of the six short vowels of Australian English that are heard in KIT, DRESS, STRAP, STRUT, LOT, FOOT
(counter-clockwise from upper left).

From the 'AFL football' to the 'vowel quadrilateral' ... and beyond
The roughly oval articulatory shape as measured in the mouth:

can be stylised to form the 'vowel quadrilateral', based partly on anatomical and partly on psychological (PERCEPTUAL) criteria; this, in turn, can be modified on the basis of ACOUSTIC measurements:

Finally, the quadrilateral shape can be idealised further to form a square or rectangle, if necessary:

$\mid \mathrm{I} /$		$\|0\|$
$\mid \mathrm{e} /$		
$\mid \mathrm{x} /$	$\|\mathrm{A}\|$	$\mid \mathrm{D} /$

4 Vowels: phonetics vs phonemics

Vowels: phonetics vs phonemics

- How many phonetically distinct vowels are there along the continuum $[\mathrm{i}]-[\mathrm{a}]-[\mathrm{a}]-[\mathrm{u}]$?
- How many phonemically distinct vowels are there along that continuum?
- The answer to the first question depends on how good your hearing is.
- The answer to the second question depends on what language you're talking about.
- Arabic has / i a u / (each of these three can be short or long)
- Spanish has / i e a ou /
- Italian has / ie ε a o ou /
- French has /ie ε a a oou /

5 Vowel quadrilateral and cardinal vowels

Vowel quadrilateral and cardinal vowels

to-bottom: jaw is close (top) or open (bottom); lips are unrounded (symbol to the left of the dot) or rounded (symbol to the right of the dot); beware [ə] [r] (unrounded), [v] (rounded); NOTE: [a] is 'front' (just like [i])

Only for freaks

- the meaning of the vowel quadrilateral in terms of formants:
- CLOSE [i] [u] (LOW F_{1}) vs OPEN [a] (HIGH F_{1});
- back [u] [a] (low F_{2}, small $F_{2}-F_{1}$ difference) vs front [i] (high F_{2}, large $F_{2}-F_{1}$ difference)
- check it: https://de.wikipedia.org/wiki/Datei:Spectrogram -iua-.png
- synthesise some vowels: http://www.asel.udel.edu/speech/tutorials/synthesis/vowels.html
- $\operatorname{try} F_{1}=240 \& F_{2}=2400$ (leave F_{3} blank); what did you hear?
- $\operatorname{try} F_{1}=750 \& F_{2}=940$ (leave F_{3} blank); what did you hear?
- $\operatorname{try} F_{1}=250 \& F_{2}=595$ (leave F_{3} blank); what did you hear?
- experiment with synthesising more vowels for yourself: http://www.asel.udel.edu/speech/tutorials/ synthesis/vowels.html

6 English vowel phonemes vs. cardinal vowel positions

English vowel phonemes vs. cardinal vowel positions

- The cardinal vowel positions on the IPA chart are reference points, designed to 'sound equidistant'.
- The pronunciation of the English phoneme /ə/ is [ə], i.e. it falls exactly on one of the cardinal vowel positions.
- The pronunciation of the English phoneme /e/ falls halfway between the cardinal vowel positions [e] and $[\varepsilon]$.
- We write /e/ rather than $/ \varepsilon /$ because $\langle\mathrm{e}\rangle$ is easier to typeset than $\langle\varepsilon\rangle$ and because we want to discourage German speakers from pronouncing that English phoneme as $[\varepsilon]$, which might sound too German; pronouncing it as [e] would merely sound too Australian.
- See if you can identify other cardinal vowels that are used in pronouncing English phonemes.
- Beware the English phoneme $/ \Lambda /$. This has evolved away from the $[\Lambda]$ position, and is now nearly $[\mathrm{e}]$. (Should it be written as /e/?)
- Look at the diacritics on your IPA chart for ways of 'fine-tuning' phonetic transcriptions of vowels.

7 Using diacritics for vowels
Using diacritics for vowels
ex Raised
Lowered $\underset{\text { e }}{\mathbf{e}}$
$\underset{+}{\mathbf{U}}$ Advanced Retracted $\underline{\mathbf{i}}$
ä Centralized

Mid-Centralized $\stackrel{\mathbf{x}}{\mathbf{I}}$

〇̧ More rounded
Less rounded ?
$\tilde{\varepsilon}$ Nasalized
Rhoticity 3°

8 English sounds classified
English sounds classified

SOUNDS		
OBSTRUENTS	RESONANTS	
	NASAL AND LATERAL RESONANTS	CENTRAL ORAL RESONANTS
[pttfk] [bddzg] [f0sf] [voz3]	$\begin{gathered} {[\mathrm{mng}]} \\ {[1 / \mathrm{t}]} \end{gathered}$	
[h]		
CONTOIDS		VOCOIDS
Sounds		

	SOUNDS

